
Final Report

Solar-Powered Wi-Fi Repeater
Zephan Enciso, Chloe Frentzel, Matthew Hawkins, Lisa
Huang, Jake Leporte

13 May 2021
EE Senior Design

Contents
Overview 3

Problem Statement and Proposed Solution 3
System Requirements 4

Subsystems 5
Power System 5
Board 6
Enclosure 7
Software 8

Bill of Materials 10

Conclusions 10
Summary 10
Future Work 10

References 12

2

Overview
GroundLink is a solar powered Wi-Fi range extender. It is a stand alone device that can be
placed outside to amplify the Wi-Fi signal from a nearby building. The heart of the device
is the ESP32-WROVER-IE microcontroller that acts both as an access point and station,
providing NAT routing for Wi-Fi signals on the 2.4 GHz Wi-Fi range. After the device has
been configured using the device’s web interface and placed in its desired location, the
device will connect to an existing wireless network and provide up to four devices with a
reliable WiFi connection.

Problem Statement and Proposed Solution

We address limited Wi-Fi coverage in outdoor college campus spaces. With the ongoing
global pandemic, there has been an increased need for strong Internet connection in
outdoor spaces for various tasks such as Zoom for class sessions and other meetings. In
addition to ease of use and access to Zoom in outdoor spaces, our device will also
encourage students and faculty to spend more time outside.

Our device presents a 802.11n Wi-Fi AP with WPA2 security to protect users’ privacy and
limit access to the network. The device operates on the 2.4 GHz Wi-Fi range, which
features longer range at the cost of raw throughput. Upon connecting, the user can
configure the device via a web interface (at IP address 192.168.4.1). This allows the user
to connect to an existing wireless network or change the default password and SSID. To
cover a larger area, the devices can be chained together (albeit with a latency penalty).

The device is powered by a system consisting of solar cells, batteries, power regulators,
and a charge controller. When external conditions do not allow the solar cells to output
enough to power the device, the batteries allow the device to continue to run, as well as
provide a steady source of power. Our 6 V, 6 W solar panel occupies a footprint of
approximately 220 mm by 175 mm, which sets the length and width dimensions of the
device.. The charge controller balances solar charging across all the battery cells,
ensuring even wear. In the event the user wishes to charge the device in the absence of
sunlight, the device features a micro USB-B connection for DC charging.

3

At the heart of the device is the ESP32-WROVER-IE microcontroller, which both services
web requests and provides routing for Wi-Fi signals. The ESP32 comes with extensive
Wi-Fi functionality onboard, and the connectivity is enhanced with an external antenna.

To package the device, we created a 3-D printed prototype enclosure. The enclosure
provides minimal protection from dust and water while housing the entire device in a
self-contained unit. With the enclosure, the device is able to be transported easily and is
an isolated unit.

System Requirements

● Power system consisting of a solar input and DC input powered by a USB power
adapter alongside a regulatory circuit

● Circuitry for interfacing the different hardware components of the project with
each other, mainly the power system, the microcontroller, and the antenna.

● An external antenna to enhance the internal antenna trace of the ESP32.

● UART interface connected a microUSB-B port on the device. This allows the ESP32
to show up as a virtual COM port on a PC and be programmed in a manner similar
to Arduino microcontrollers.

● TCP/IP stack with routing capabilities.

● A web server running on the microcontroller, which will host the configuration site.
The configuration site is designed using web programming APIs provided with the
ESP32 microcontroller and written with HTML and CSS. The design attempts to
balance ease-of-use with configurability.

● Enclosure designed in CAD and 3-D printed to house all elements while also being
slightly water and dust resistant (protect the device)

4

Subsystems

Figure 1. Block Diagram

Power System

The power system of the device is powered by a battery that is charged either by the solar
panel or from a USB mini-B input using a MCP73871 charge controller. The charge
controller sends the input power from the solar panel or the USB to charge the battery and
shuts off the device if the battery power gets too low or if there is not enough power coming
from the input sources. LEDs on the side of the device indicate the status of the charge
controller. The Red LED indicates there is sufficient input power to charge the battery. The
yellow LED indicates that charge is actively being stored, and the green LED indicates that
the charging is complete. A switch is also included to easily disconnect the battery from
the device to prevent it from discharging while the device is not being used.

5

Board

The PCB contains circuitry for the power system and the microcontroller. A USB mini-B
connector allows the system to be plugged into a laptop for programming or charging. A
DC barrel plug attaches the solar panel to the board. These act as inputs to the MCP73871
charge controller which is used to charge the 3.7 V battery that powers the board. The
LM3671 DC-DC converter steps this voltage down to 3.3 V which is used to power the
ESP32-WROVER-IE microcontroller and the CP2102. The CP2102 is used to program the
ESP32 using a UART interface. An external 2.4 GHz Omni-directional WiFi antenna
connects to the internal antenna trace of the ESP32 to further extend the signal.

Figure 2. Power Circuitry

Figure 3. Programming Circuitry

6

Figure 4. EAGLE Board Layout

Enclosure
The enclosure houses the board, the battery, antenna, and operation LEDs. It also serves as
a stand for the solar panel. With the enclosure, the device is a self-contained unit ready for
transport. The Navari Family Center for Digital Scholarship (CDS) was used in order to
print the enclosure after its design in Autodesk Inventor.

7

Software

The software uses an Network Address Translation (NAT)-capable IP stack called "lwip",
which Espressif includes in its SDK for the ESP32. Our application code is forked from free
and open source code provided by Martin Ger (ESP32 Nat Router) which uses the
underlying ESP IP stack to perform NAT routing between the STA interface and the AP
interface on the chip. We modified the code to provide additional configuration options,

8

https://github.com/martin-ger/esp32_nat_router

with the hope of using the underlying software stack to implement WPA Enterprise
security (specifically PEAP). Unfortunately, due to inconsistencies between the
networking stack included in the Espressif ESP32 SDK and other ESP PEAP
implementations, coupled with the closed-source nature of the lowest levels of the stack,
meant that implementation of this feature proved infeasible given our time constraints.
We save this for future work.

Bill of Materials
The total cost of all the components in our project totaled to $277.09 and included the
peripheral parts of our device and the components on our PCB as outlined in Figure 1
below.

Figure 2. Bill of Materials

Conclusions
Summary

Our device successfully extends the range of a Wi-Fi network, pairing to a home network
and the user’s desired device. The team successfully met the requirements set in the Fall
of 2020, with key subsystems all interacting together to accomplish the stated objective of
Wi-Fi connection. Furthermore, our device was under budget and on schedule, which
points to the feasibility of manufacturing at scale, especially with further modifications
and improvements in product efficiency.

9

Recommendations

Fearing the complexity of the Espressif IDF, we wasted a lot of development time using the
Arduino IDE, which appears more user-friendly on the surface. Unfortunately, using such
an abstracted development framework means losing out on a lot of low-level functionality
that our project would eventually depend on. For example, there is no way to implement
NAT forwarding using the Arduino IDE because not enough of the network functions are
exposed to the programmer. As it turns out, the Espressif IDF is not only more powerful,
but it is also more pleasant to program in. Installation of the IDF is a breeze, and all of the
tools run from a single function:

idf.py build # Build project from source

idf.py flash # Flash compiled project to device

idf.py monitor # Open serial monitor

idf.py erase-all # Erase memory

idf.py make-menuconfig # Pull up a GUI for setting configuration

Programming in the Espressif IDF is also straightforward, thanks to the well-written
documentation and abundance of example projects included in the IDF. Finally, and
perhaps most importantly, the make flow can be completely customized should users want
to use different libraries. Overall, we would strongly recommend groups interested in the
ESP32 to use the Espressif IDF from the get-go.

With respect to 3D printing and board delivery, we’d recommend other groups be
prepared for longer than expected lead times. Such lead times could get in the way of
progress, but our group managed to keep making progress on other aspects of the device
such as software. Furthermore, 3D printing at the CDS may not always come out clean on
the first iteration, so groups should expect to wait or make modifications to any 3D prints.

Future Work

In the future, there will be improvements to the fit and finish of the enclosure. Instead of
3D printing, one could use more advanced machining methods and materials. This will
ensure weatherproofing and upgraded IP65 dust and water resistance for outdoor use. As
an additional consideration for the future, shielding for EMI from RF sources and
additional access points may be included. To the overall device, a USB A power out from
the GroundLink device will also be added. The Wi-Fi repeater will be more versatile,
providing battery charge to other devices as well. In addition, there will be increases to the

10

security of the web protocols. This includes transmission of configuration data over HTTPS
and storing encrypted configuration information. Finally, with more time and
communication with other members of the ESP community, WPA Enterprise support can
be added to the device.

11

References
Charge Controller Demo Board

ESP32 Dev-Kit

ESP-IDF SDK

Martin Ger's ESP32 NAT Router Repository

12

https://learn.adafruit.com/usb-dc-and-solar-lipoly-charger/using-the-charger?view=all#downloads
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://github.com/martin-ger/esp32_nat_router

